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Abstract 

 

A generalized linear model based on Poisson regression has been used to assess the impact of 

environmental variables modulating tropical cyclone frequency in six main cyclone 

development areas: the East Pacific, West Pacific, North Atlantic, North Indian, South 

Indian, and South Pacific. The analysis covers the period 1980-2009 and focuses on widely 

used meteorological parameters including wind shear, sea surface temperature, and relative 

humidity from different reanalyses as well as aerosol optical depth for different compounds 

simulated by the GOCART model. Circulation indices are also included. Cyclone frequency 

is obtained from the International Best Track Archive for Climate Stewardship. A strong link 

is found between cyclone frequency and the relative sea surface temperature, Atlantic 

Meridional Mode, and wind shear with significant explained log-likelihoods in the North 

Atlantic of 37%, 27%, and 28%, respectively. A significant impact of black carbon and 

organic aerosols on cyclone frequency is found over the North Indian Ocean, with explained 

log-likelihoods of 27%. A weaker but still significant impact is found for observed dust 

aerosols in the North Atlantic with an explained log-likelihood of 11%. Changes in lower 

stratospheric temperatures explain 28% of the log-likelihood in the North Atlantic. Lower 

stratospheric temperatures from a subset of CMIP5 models properly simulate the warming 

and subsequent cooling of the lower stratosphere that follows a volcanic eruption but 

underestimate the cooling by about 0.5 °C.  
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1. Introduction  

Tropical cyclone (TC) activity, frequency and intensity, varies on interannual and 

interdecadal timescales (e.g. Klotzbach, 2006; Landsea et al., 2006; Kossin et al., 2007; 

Klotzback and Gray, 2008; Kossin et al., 2013), but finding a robust theory to explain these 

fluctuations has proved challenging. A first major issue is the limited availability of accurate 

long-term TC records. The records typically have a limited temporal coverage (Knutson et 

al., 2010) and suffer from changes in technology and methodology (e.g., Nicholls et al., 

1997a). The latter cause temporal heterogeneities and lead to errors such as spurious trends in 

the Pacific (Kunkel et al., 2013) and an underestimation of the number of extreme TCs in the 

North Indian Ocean (Landsea et al., 2006).  

 

The role of natural climate variability in influencing TC activity has been studied in detail in 

the past, mainly using statistical methods (e.g. Nicholls, 1984; Gray 1984a,b; Evans and 

Allan, 1992; Dong and Holland, 1994; Landsea et al., 1999), global (e.g. Ouuchi et al., 2006; 

Bengtsson et al., 2007; Knutson et al., 2010; Murakami et al., 2012; Camargo, 2013) and 

regional (e.g. Diro et al., 2014) climate modeling. These and other studies (e.g. Emanuel and 

Nolan, 2004; Camargo et al., 2007; Tippett et al., 2011) have proposed many environmental 

variables as proxies or genesis potential indices for TC activity. Amongst them are sea 

surface temperature (SST), lower to middle level relative humidity (RH), and modes of 

general circulation of the atmosphere including the quasi-biennial oscillation (QBO), El 

Niño-Southern Oscillation (ENSO), the Atlantic Multidecadal Oscillation (AMO), and the 

Atlantic Meridional Mode (AMM).  

 

 



 

 
© 2016 American Geophysical Union. All rights reserved. 

The role of ENSO in modulating TC variability has received significant attention (e.g. 

Camargo et al., 2005; Wang et al., 2014). SST anomalies are the main thermodynamic 

contributor by which ENSO influences TC activity (e.g. Gray, 1984; Elsner et al., 2001), 

while wind shear is the main dynamical factor (Wang and Lee, 2009). In the North Atlantic, 

the latter was found to be more important than ENSO-related thermodynamic effects 

(Camargo et al., 2007). During an ENSO warm phase – El Niño – an increase in upper 

tropospheric westerly winds (Wang and Lee, 2009) in the North Atlantic region enhances the 

vertical wind shear; this then inhibits the formation and further development of TCs in the 

North Atlantic and facilitates those in the East Pacific. The opposite occurs during the ENSO 

cold phase – La Niña – where an increase in TCs is observed in the North Atlantic while a 

decrease is observed in the East Pacific. Other studies addressed teleconnection patterns, 

finding an increase in TC frequency in the western North Pacific during strong El Niño 

events and a shift in TC genesis to the southeast of this region during an El Niño and to the 

northwest during a La Niña (Wang and Chan, 2002, Camargo and Sobel, 2005). There is also 

evidence for increased hurricane numbers in the central and eastern North Pacific region 

during an El Niño (e.g. Frank and Young, 2007; Grey and Sheaffer, 1991). In the North 

Indian Ocean basin, fewer intense TCs occurred during El Niño events (Sing et al., 2000) 

while in the South Indian Ocean there were a greater number of TCs during La Niñas 

(Kuleshov and de Hoedt, 2003). There have also been a number of studies conducted in the 

South Pacific and Australian basins (e.g. Nicholls, 1979; Basher and Zeng, 1995), which 

found an increase in the number of TCs in the southwest Pacific during El Niño years. 

Specifically, TC genesis regions in these basins shift eastward (El Niño) and westward (La 

Niña) (Evans and Allen, 1992; Camargo et al., 2007) as well as northward (El Niño) and 

southward (La Niña) (Revell and Goulter, 1986; Camargo et al., 2007). Finally, ENSO has 

also been proposed as the underlying factor for the inverse relationship observed between the 
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North Atlantic and East Pacific TC frequencies (Landsea and Gray, 1989; Collins, 2007, 

2010, and Tang and Neelin, 2004).  

 

Analogous studies have addressed the interaction of other climate modes with TCs. Gray 

(1984a; b) was the first to propose that the westerly phase of the QBO corresponds to an 

increased TC activity in the North Atlantic while the easterly phase of the QBO is associated 

with a decrease in TC activity in the West Pacific. However, more recently Camargo and 

Sobel (2010) show that such a relationship is not found after the 1980s, and a clear 

explanation for this change is still missing. The AMO has been linked to the intense hurricane 

season of 2005 over the Atlantic (Trenberth and Shea, 2006), and its strong dominance over 

climate variability has been shown to temporarily counteract the possible influence of global 

warming on TCs (Chylek and Lesins, 2008). Related to the AMO is the AMM, which 

describes the meridional variability in the tropical Atlantic Ocean. The AMM has been found 

to be strongly linked to seasonal hurricane activity on both interannual and decadal time 

scales. Thus, it reinforces the argument for a strong dynamical relationship between the 

climate and TC activity (Tang and Neelin, 2004; Vimont and Kossin, 2007).  

 

In addition to the traditional tropospheric drivers of TC variability, some studies have 

investigated the influence of the stratosphere. Stratospheric forcing can directly influence 

both upper and lower-tropospheric dynamics (for a comprehensive review see Song and 

Robinson, 2004), and there is also evidence that the stratosphere affects synoptic structures in 

the tropical regions. Thus, it is reasonable to assume that their influence extends to TCs. A 

number of studies have linked stratospheric winds to cyclone frequency (e.g. Gray, 1984a; 

Chan, 1995). The proposed physical connection is that the westerlies in the lower 

stratosphere affect vertical wind shear in the upper troposphere, thus favoring or suppressing 
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the formation of TCs. More recent studies have highlighted the influence of stratospheric 

temperature anomalies on the potential intensity of cyclones (Emanuel et al., 2013; Vecchi et 

al., 2013). The temperature of the lower stratosphere affects the cyclone‟s outflow 

temperature, which is one of the factors determining the cyclone‟s thermal efficiency. The 

TC‟s thermal efficiency is directly related to the ratio of SST and outflow temperature, 

whereby a colder stratosphere will lead to a colder outflow temperature, hence raising 

thermal efficiency (Ramsay, 2013). However, all of these studies have only analyzed the link 

between stratospheric temperatures and TC intensity, without considering possible impacts 

on frequency.  

  

The role of anthropogenic climate forcing in affecting TC activity is even harder to quantify 

than that linked to natural fluctuations, and large uncertainties still exist (Mann and Emanuel, 

2006; Knutson et al., 2010). The problem is intrinsically complex, since it requires detecting 

the net effect of multiple small drivers on a system with a large background noise. For 

instance, increased surface temperature due to global warming is expected to also lead to 

increased potential intensity of TCs as first investigated in Emanuel (1987) and Holland 

(1997) and heighten the probability of more intense TCs occurring in the future (Emanuel 

1987, 2013; Bengtsson et al., 2007; Knutson et al., 2010, Murakami et al., 2012). On the 

other hand, local surface cooling due to natural and anthropogenic aerosols will likely 

suppress their development (Mann and Emanuel, 2006; Evan et al., 2006a; Evan et al., 2012; 

Dunstone et al., 2013; Wang et al., 2014), and assessing the two effects separately is no easy 

task. There is evidence that aerosols have influenced multidecadal changes in SST by 

modifying the net surface shortwave radiation (Booth et al., 2012), but further work is 

necessary to assess the degree of this forcing on SST variability (Zhang et al., 2012). Indeed, 

the potential influence of short-lived anthropogenic aerosols on TC activity is only beginning 
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to be explored. Associating trends in TCs with climate change is therefore challenging, and 

recent efforts to study the influence of natural variability versus anthropogenic forcing on TC 

activity (e.g. Emanuel and Mann, 2006; Ting et al., 2015) have obtained conflicting results.  

 

Notwithstanding the vast literature reviewed here, there is no clear overview and comparison 

of the dependence of TC frequency on external variables in all six major TC regions of the 

globe. The aim of this study is to fill this gap by analyzing the fraction of explained deviance 

or fraction of explained log-likelihood associated with the observed meteorological and 

environmental variables in each basin, and by discussing the results in terms of the 

underlying physical processes that are likely to drive TC activity. Throughout the analysis we 

adopt a statistical linear model based on Poisson regression. Unlike previous studies, all six 

major oceanic regions displaying TC development are considered: the East Pacific (EP), 

West Pacific (WP), North Atlantic (NA), North Indian (NI), South Indian (SI), and South 

Pacific (SP) (see Figure 1 for their geographical location and Table 1 for their coordinates). 

The complete list of variables we investigate is provided in Table 2. Because of the limited 

reanalysis time series of 30 years we do not include the AMO, which is found to be 

uncorrelated to TC activity on interannual time scales (Vimont and Kossin, 2007). We further 

use relative SSTs, in addition to absolute values. As noted in Vecchi and Soden (2007, 2008), 

Swanson (2008) and Camargo et al. (2013), the relative warming of the local SST with 

respect to the warming of the tropics is the variable that more strongly modifies TC potential 

intensity. While we focus on TC frequency rather than intensity, we nonetheless decide to 

investigate relative SSTs for coherence with the literature. Some of the variables analyzed 

here, such as lower (1000-850 hPa) and middle (700-500 hPa) level RH, SST and ENSO, 

have been commonly used in tropical cyclone research, albeit over more limited geographical 
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domains. Other variables have generally not been extensively studied in the past. These 

include: 

i) Aerosol optical depth of several atmospheric components including: black and 

organic carbon (BC and OC, respectively), sulfate (SU), dust (DU), and sea 

salt (SS). There is only a limited amount of research suggesting a possible 

influence of these variables on climate and on tropical cyclones in particular 

(e.g., Emanuel and Mann, 2006; IPCC AR5 report, Wang et al 2012; Dunstone 

et al, 2013) 

ii) Lower stratospheric temperature at 100 hPa, motivated by Emanuel‟s (2013) 

theory that lower stratospheric cooling influenced the recent TC potential 

intensity changes.  

Where possible, the results are compared to the existing literature and tested for self-

consistency. The statistical  relationships we find between observed variables and TC 

frequency can be useful in testing the performance of climate models. 

 

Section 2 provides a detailed overview of the datasets used and the methodology; Section 3 

presents the results of the regression analysis linking the tropospheric and lower-stratospheric 

variables to TC frequency in the different basins. Section 4 discusses the results in terms of 

physical processes and section 5 provides a summary and conclusions.    
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2. Data and Methodology 

2.1 TC Domains 

The analysis considers the six main oceanic regions displaying TC development. The choice 

of the NA region was based on the “Main Development Region” (MDR) defined in 

Goldenberg and Shapiro (1996), while the EP region of development was taken from Collins 

(2010). To our knowledge, there are no widely used conventions for the regions of TC 

development in the other areas we address. We have therefore defined these regions 

according to the IBTrACS storm tracks presented in Figure 3a of Knapp et al. (2010). Note 

that no land grid boxes are considered in the above domains. We have calculated the seasonal 

and five-year running mean TC frequency in each ocean basin for the period 1980-2009 

(Figure 2). The values for each basin are computed over the period of strongest TC activity as 

defined in Table 1.  

 

2.2 The Datasets 

 

The present study uses data from a wide range of analysis products based on observations and 

in the case of aerosols, on chemical transport modeling and historical global emissions 

evaluated with remote sensing observations. The TC tracks are obtained from the National 

Oceanic and Atmospheric Administration‟s (NOAA) IBTraCS dataset (v03r05, Knapp et al., 

2010; Kruk et al., 2010). This enables us to compare the TC frequency in the different basins. 

The dataset covers the period 1842-2012, and we select 1980 as the start of our time series 

because prior data are less reliable (Landsea et al., 2004; Trenberth and Shea, 2006).  
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Most of the climatic variables analyzed (see Table 2) are obtained from the European Centre 

for Medium-Range Weather Forecasts‟ (ECMWF) ERA-Interim reanalysis (Dee et al., 2011), 

the Modern-Era Retrospective Analysis for Research and Applications (MERRA) (Rienecker 

et al., 2011), and the National Centers for Environmental Research/National Center for 

Atmospheric Research (NCEP/NCAR) reanalysis project (Kalnay et al., 1996). Only the 

period since 1980, when satellite assimilation began, is considered here. The vertical wind 

shear is calculated as the difference between zonal winds at 200 and 850 hPa, as commonly 

defined in the literature (e.g. Goldenberg et al., 2001; Zhang and Delworth, 2006; Ng and 

Chan, 2012). The relative SST is computed as the difference between the local SST, (i.e. SST 

averaged over the MDR or any of the other TC development regions as defined in Table 1) 

and the average SST of the tropical ocean basins from 20° North to 20° South. ERA-Interim 

has a horizontal resolution of 80 km and 60 vertical levels from the surface to 0.1 hPa.  

Based upon previous work (e.g. Murakami, 2014), TC distribution and seasonal variation of 

reanalyses, which includes all those in our study, compare well with observations even when 

using a different TC detection algorithm. There were also statistically significant correlations 

found, especially in the western North Pacific and North Atlantic basins, between the 

observed and detected interannual variability of the TC genesis number. From these results, 

we point out that the reanalyses we used provide a coherent representation of TC 

climatology.  
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The atmospheric aerosol optical depth (AOD) values come from simulations using the 

Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which considers the 

aerosol compounds of BC, OC, SU, DU, and SS according to Chin et al. (2002, 2014). 

GOCART uses prescribed meteorological fields from MERRA over the period 1980-2009, 

with a spatial resolution of 2º latitude × 2.5º longitude and 72 vertical levels extending from 

the surface to 0.01 hPa (Chin et al., 2014). The calculation of the AOD is performed at 550 

nm and is based on the aerosol mass and optical properties from the Global Aerosol Data Set 

(GADS) (Köpke et al., 1997; Chin et al, 2002), updated for non-spherical dust particle 

properties (Chin et al., 2014). Modeled results of the global AOD distributions have been 

compared extensively to satellite and station data in Chin et al. (2014), including over the 

oceans. The model is able to capture the main patterns of AOD change found in satellite data 

such as the declining aerosols level over Europe due to stricter air pollution emission control 

enforced starting in the mid-1980s and the increase of combustion aerosols over Asia. 

Another robust feature found is the reduction of AOD between the late 1980s and the late 

2000s (see Figure 11 in Chin et al., 2014) of dust aerosol outflow over the tropical North 

Atlantic, which agrees with the available satellite data and surface dust concentration 

observations. We therefore deem the dataset appropriate for the present study. Additional 

information on the GOCART simulations can be found in Chin et al. (2014).  

 

In addition to the modeled dust AOD, observed dust AOD was also obtained from a dataset 

where a dust retrieval algorithm was applied using data from the Advanced Very High 

Resolution Radiometer (AVHRR) instrument onboard polar orbiting satellites (Evan and 

Mukhopadhyay, 2010). The algorithm is an advanced method that improves the ability to 

discern dust from clouds even during dust storms when the dust is optically thick from dust 

storms. The monthly mean dust AOD was retrieved over the northern tropical Atlantic (0-30° 
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N, 10-65° W) with a 1° × 1° horizontal resolution and as a monthly mean over the period 

January 1982-May 2010. We then compare the impact of observed dust AOD versus modeled 

(i.e. GOCART) dust AOD on TC frequency in the NA. The temporal correlation between the 

modeled and observed dust AOD in the NA is 0.8. 

 

The stratospheric aerosol optical depth (SAOD) is estimated using solar occultation from the 

Stratospheric Aerosol Monitor (SAM) II and Stratospheric Aerosol and Gas Experiment 

(SAGE) II satellites. The data were obtained from NASA Goddard Institute for Space Studies 

(GISS, Sato et al., 1993). The SAOD is currently available from 1850-2012 as a zonal mean 

over 8º latitude bands, ranging from 90°N to 90°S. Due to the coarse meridional resolution of 

the data, the SAOD averages for the individual basins do not always match the exact northern 

and southern domains shown in Figure 1. We limit our analysis to the period 1980-2009 to 

match the temporal coverage of the GOCART AODs and to utilize the period when satellite 

data have greatly increased the number of available observations. 

Part of the analysis focuses on the role of lower stratospheric cooling in affecting TC activity. 

To analyze such cooling, we used a multi-model mean (MMM) from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) simulations, for the period 1950-2005. The MMM 

includes CCSM4, CNRM-CM5, GFDL-CM3, GISS-E2-R, and NorESM1-M (see Table 3). 

These models were chosen because they include the full radiative effects of volcanic aerosols 

and interactive or semi-offline stratospheric ozone chemistry. 
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Finally, the analysis also considers several modes of atmospheric circulation, namely the 

AMM, ENSO, North Atlantic Oscillation (NAO), and QBO. We decided not to include the 

Arctic Oscillation as it is highly correlated to the NAO (Ambaum et al., 2001; Hannachi et 

al., 2009). The AMM index is based on the maximum covariance analysis of SSTs and the 

zonal and meridional components of the 10 m winds with the seasonal cycle removed. The 

data are also detrended and a three-month running mean applied following Chiang and 

Vimont (2004). The ENSO index used here is the “Multivariate” ENSO Index (MEI), based 

on sea-level pressure and SSTs in the tropical Pacific. The index is calculated from the first 

principal component (PC) of these two variables, taken from the UK Met Office Hadley 

Centre data (Wolter and Timlin, 2011). The NAO index is derived from the first PC of 

monthly-mean 700 hPa geopotential heights, and was taken from the NOAA Climate 

Prediction Center, following Barnston and Livezey (1987). The QBO is the zonal average of 

the 30 hPa zonal wind at the equator, as calculated by the NOAA Earth System Research 

Laboratory.  

All indices and atmospheric variables are averaged over the TC seasonal periods displayed in 

Table 1, relative to the domains shown in Figure 1. This methodology is based on Sabbatelli 

and Mann‟s (2007) study of the NA‟s SSTs and TC counts.  

 

2.3 Statistical Methods 

The analysis is based on the statistical technique of Poisson regression, which is suitable for 

count data. Thus, we make the assumption that the conditional expectation of the dependent 

variable Y (i.e. the number of TCs in a given basin) with respect to a vector x containing the 

18 variables considered in each basin (see Table 2 for a list) is given by: 

                   
  
    ,   (1) 
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where α0 ,…, α18 are the regression coefficients. From the probability function of the Poisson 

distribution, we find that the conditional probability of observing y cyclones given the vector 

x of variables and the vector α =(α0 ,…, α18 ) of regression coefficients is: 

         
 
          

  
    

   
        

  
   

  
.  (2) 

Based on these conditional probabilities, we construct the likelihood function, which we 

maximize in order to find the optimal choice of α.  

 

To quantify the influence of the different variables on the number of TCs in each basin, we 

let M0 denote a constant Poisson regression model and Mi a Poisson regression model based 

only on the ith of the 18 variables, xi. The deviances of these Poisson regression models are 

defined by 

  

                                                ,   (3) 

                                                      ,  (4) 

 

where the saturated model has one parameter for every observation and hence fits the data 

perfectly. The contributions of the 18 variables are quantified by the pseudo-R
2 

measure 

(Cameron and Windmeijer, 1996; Heinzl and Mittlbock, 2003)
 

   
                               

                                      
   

     

     
   (5) 

which can be interpreted as the fraction of explained deviance or fraction of explained log-

likelihood. Under the null hypothesis that M0 is the true model, the difference between the 

deviances (i.e. likelihood ratio test) of the two models, D(M0)-D(Mi), follows an approximate 

chi-squared distribution with one degree of freedom. The contribution to the number of TCs 

from variable i in a given basin was assessed for statistical significance at the 5% level using 
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the quantiles of the chi-squared distribution. Since we are considering 18 statistical inferences 

simultaneously, the multiple testing problem arises. If the 18 variables are perfectly 

dependent, the overall significance level is obtained by using the 5% level in each of the tests, 

but if the variables are independent, the correct significance level to use in the individual tests 

is 0.05/18. The appropriate level clearly depends on the dependence and distribution of the 

variables, which are generally unknown. To address this issue, a significance level of 2.5% 

was used in all of the individual tests. Note that we only discuss pseudo-R
2
 results that fall 

within this significance level unless otherwise stated. The significance of other results is 

computed at the 5% level (i.e., Figure 7). 

 

3. Results 
 

Here we focus on the fraction of explained log-likelihood (pseudo-R
2
) and sign of the 

regression coefficients from the Poisson regression between TC frequency and climatic 

variables in each basin (Figure 3). Though we use meteorological variables from the 

MERRA, ERA-Interim, and NCEP datasets in the analysis, we only report our results dealing 

with the Poisson regression using MERRA. In fact, the latter dataset provides the most 

statistically significant regression results. Nonetheless, the other two datasets are in general 

agreement with MERRA, as can be seen in the Appendix. A similar analysis with variables 

mainly including circulation indices and SST was carried out in Sabbatelli and Mann (2007) 

and Caron et al. (2015) in the NA. We first examine the link between TC frequency and 

tropospheric (section 3.1) and stratospheric variables (section 3.2). Finally, we discuss TC 

frequency in relation with the circulation modes (section 3.3).  
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3.1 Tropospheric variables associated with TC frequency 

3.1.1 SSTs and atmospheric variables 

The relation between absolute SSTs and TCs shows pseudo-R
2
 values close to or exceeding 

22% in the EP, NA, SI and SP, indicating a large influence of SSTs on the frequency of TCs 

in these basins (Figure 3). In the WP and NI Oceans, the pseudo-R
2
 values are not significant, 

in agreement with previous findings (e.g., Chan and Liu, 2004; Ng and Chan, 2012). 

Interestingly, the EP and NA both have significant positive regression coefficients, while SI 

and SP both have negative regression coefficients. The negative regression coefficients found 

in the SI and SP appear counterintuitive. Out of all the 18 variables analyzed, the relative SST 

dominates in the NA and SP with pseudo-R
2
 values of 37% and 30%, respectively. Similarly 

to the SSTs, precipitable water can be regarded as a potential energy source through its 

release of latent heat for TC development (Vasquez, 1994), and explains a significant portion 

of TC variability in multiple basins: the NA, NI, SI, SP. The sign of the regression 

coefficients for the precipitable water is always positive in the NA and NI but is negative in 

the SI and SP.  

 

RH is a variable often found to be linked with TCs, but the NA is the only basin where a 

statistically significant impact on TC frequency was found. The corresponding regression 

coefficient was negative and the pseudo-R
2
 was 14%. The NA is also the only basin where 

wind shear is statistically significant with an explained log-likelihood of as much as 27%, in 

agreement with Aiyyer and Thorncroft (2011). As for RH, the wind shear also displays a 

negative regression coefficient. In the other basins, the TC frequency is dominated by either 

modes of variability or aerosols.  
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3.1.2 Tropospheric aerosols 

The only significant positive link between TC frequency and aerosols is found for BC and 

OC in the NI (Figure 3d). The similar result for OC and BC is not surprising as combustion-

derived BC and OC, in particular from biomass burning, have similar source distributions 

(e.g. Bond et al., 2007). There is no strong link with aerosol concentration/AOD elsewhere. 

In the NI Ocean (Figure 3d), the explained log-likelihoods of BC and OC are 27%. An 

increase in BC causes a heating in the lower troposphere from solar absorption, as well as a 

negative radiative forcing at the surface (Meywerk and Ramanathan, 1999). A negative 

surface forcing may in turn result in a decrease in the meridional SST gradient, and a 

weakening of the lower tropospheric tropical easterly jet (Chung and Ramanathan, 2006; 

Meehl et al., 2008; Evan et al., 2011). Evan et al. (2011) argued that this would weaken the 

monsoon circulation and reduce the strength of the vertical wind shear, ultimately promoting 

TC development and activity. Such a mechanism is in agreement with our finding. See 

Section 4.1 for more details. 

 

For SS, the only significant results are found in the NA and SP (Figures 3c and 3f), with 

pseudo- R
2
 values of 11% and 18% and with negative and positive regression coefficients, 

respectively. The large explained log-likelihood of SS in the SP is consistent with the finding 

that, during extreme weather, large sea-salt particles can lead to an intensification of TCs 

(Zhang and Perrie, 2006). It is also plausible that strong TC activity can lead to more sea-salt 

emission. Nonetheless, large amounts of sea spray generation can substantially change the 

transfer of energy from the ocean‟s surface to the atmosphere (Fairall et al., 1994), and 

increase the surface heat fluxes (i.e., latent and sensible heat exchange) during conditions of 

high winds and warmer SSTs (Zhang et al., 2006). In the NA, the significant impact of SS 

with a negative regression coefficient could be due to the dominant role of windshear, that is 
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negatively associated to TC frequency in this basin. Therefore, with a stronger windshear, the 

stronger surface winds and higher amount of sea spray may result in lower TC numbers.  

 

Significant results are found for the observed dust AOD (AVHRR) in the NA starting at the 

2.67% significance level, with an explained log-likelihood of 11% (figure not shown), but not 

for the modeled (GOCART) values. However, if we analyze the modeled dust AOD over the 

same time period as the observed AOD (i.e. 1982-2009), the pseudo-R
2
 becomes 12% and is 

statistically significant. These results agree with the findings of Evan et al. (2006a) and Lau 

and Kim (2007), who identified an anti-correlation between NA tropical cyclone activity and 

observed dust cover. The GOCART model also shows a significant correlation or regression 

coefficient in the NI where dust mostly likely originates from the Great Indian Desert 

(Cinnam et al., 2006) or from west Asia (Dey et al., 2004).  

 

3.2 Stratospheric variables associated with TC frequency 

 

Here we analyze the role of lower stratospheric temperature on TC frequency, to address the 

open question of whether temperature variations in the stratosphere are related to TC activity. 

We also discuss the role of stratospheric aerosol loading (SAOD) in the EP and NA. 

 

3.2.1 Lower stratospheric temperatures  

We find that the lower stratospheric temperature is significantly associated with TC 

frequency only in the NA basin (Figure 3c). Both the temperature at 100 hPa and the 

SST/lower stratosphere temperature difference (i.e. SST – temperature at 100 hPa) show 

similar explained log-likelihoods of 27% and 31% respectively. The regression coefficient 

signs are negative for the temperature at 100 hPa and positive for the SST/lower stratosphere 

temperature difference in the NA. This may indicate that cooler temperatures at 100 hPa 



 

 
© 2016 American Geophysical Union. All rights reserved. 

favor TC development. Motivated by the finding in Vecchi et al. (2013) that changes in 

temperature in the upper troposphere at 300 hPa have a stronger influence on TC activity, we 

also analyzed changes in temperature at this level in all basins with significance only found in 

the NA, NI, and SI but none found in any of the basins for the SST/upper troposphere 

temperature difference (i.e. SST – temperature at 300 hPa, figure not shown). However, we 

would like to note that this problem is still unresolved as we did not use the method of 

decomposition as applied in Tang and Neelin (2004) where the principal component of NA 

SST and tropospheric temperature co-varied and explained most of their variance. It is further 

found that the temporal evolution of the SST/lower stratosphere temperature difference in the 

MERRA, ERA-Interim (figure not shown), and NCEP (figure not shown) reanalyses follow 

the variability of TC frequency very closely throughout the whole period in the NA (Figure 

4a) but not in other basins. In agreement with this, Vecchi et al. (2013) recently suggested 

that lower stratospheric temperature trends may influence TC intensity in the tropical NA. In 

the EP and in all reanalyses (figure only shown for MERRA, Figure 4b), there are periods 

from around 1980 until 2000 where changes in the temperature at 100 hPa follow closely the 

variability of the TC frequency. However, we do not find significant pseudo-R
2
 values for the 

lower stratospheric temperature in these basins except for the NA. Interestingly, while basins 

in the Northern Hemisphere display positive regression coefficients for the SST/lower 

stratosphere temperature difference (i.e. NA, EP, WP, NI), the others (i.e. SI, and SP) display 

negative ones, albeit not all statistically significant. For the temperature at 100 hPa, we see 

almost the opposite pattern with only clear negative regression coefficients in the WP (not 

significant) and NA associated with TC. This is further discussed in Section 4.4. 
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3.2.2 Stratospheric Aerosols  

Except in the EP and NA, the SAOD generally does not show a high explained log-likelihood 

(Figures 3a and 3c, respectively). It is noteworthy that in the EP, SAOD gives the highest 

pseudo-R
2
 value (25%). The SAOD‟s relation to TC frequency should be directly linked to 

aerosol radiative effects on the atmosphere and thermal structure. SAOD is strongly 

influenced by volcanic eruptions, which in turn generally warms the lower stratosphere and 

cools the surface (Evan, 2012). It is thus likely that the effect of changing SAOD on TC 

frequency is mediated by the lower stratospheric temperatures and SSTs, which would be in 

anti-phase with the TC frequency. However, SSTs show a significant positive regression 

coefficient in the EP, which would imply that cooling SSTs from a volcanic eruption lead to a 

decrease in the number of TCs. This is difficult to explain based on a simple analysis of direct 

aerosol radiative effects. More complex interactions, such as the potential link of SAOD and 

ENSO, which will be discussed in Section 4.1 may have to be invoked. 

 

3.3 Circulation modes associated with TC frequency  

Among the many modes of atmospheric circulation variability, the AMM and ENSO show 

the highest pseudo-R
2
 values. The AMM and ENSO both display statistically significant 

pseudo-R
2
 values of 27% in the NA and EP basins (Figures 3a and 3c), respectively. The 

pseudo-R
2
 of ENSO is also significant in the NA (Figure 3c). Although the pseudo-R

2
 for the 

AMM in the SI basin is only statistically significant at the 5% significance level, it is 

nonetheless worth mentioning. This shows that the AMM has strongly impacted the TC 

frequency in the NI and SI basins (figure not shown). The fact that the NAO shows no 

relation to the NA TC frequency will be discussed in Section 4. The role of the AMM in the 

NI and SI is opposite, with the former displaying a positive regression coefficient and the 
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latter a negative regression coefficient (figure not shown). This may be related to features of 

the large-scale circulation and will also be discussed in Section 4.2.  

 

4. Discussion 

4.1 Aerosols  

The analysis presented in Section 3 supports several existing hypotheses on how different 

variables such as circulation indices, meteorological parameters and aerosol 

concentration/AOD are linked to TC frequency. A summary in terms of the change in the 

mean of the TC frequency for one unit of change in the variables, is presented in Figure 8. 

However, our results also indicate a number of non-trivial chains of events, in particular 

when it comes to aerosols. The patterns seen in the NA and the EP are particularly relevant in 

this respect. SAOD variability is strongly affected by volcanic eruptions, which lead to high 

aerosol concentrations in the stratosphere. An increased SAOD generally leads to a radiative 

surface cooling (lower SSTs), which would reduce the TC frequency in the EP and NA 

(Figure 3a and 3b). However, in the EP the higher SAOD values are associated with 

increased TC frequency. The reason could be that strong volcanic eruptions might favor El 

Niño-like conditions (e.g. Adams et al., 2003; Mann et al., 2005; Emile-Geay et al., 2008; 

Pausata et al., 2015a,b), leading to warmer SSTs over the EP. Specifically, Adams et al. 

(2003) found a 42% likelihood for such conditions to occur in the first year after a large 

eruption. Though the topic of whether a strong tropical volcanic eruption can trigger an El 

Niño is still controversial, our results are consistent with an SAOD-ENSO connection. To 

better understand the individual and combined impact of the radiative (SAOD-SST) and the 

SAOD-ENSO feedbacks on TCs frequency, ad-hoc sensitivity modelling studies need to be 

performed. As climate models improve in resolution and begin to resolve explicitly TC 

development, a better understanding of these relationships will be gained. 
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The BC and OC aerosol burdens were found to be strongly correlated with TC frequency in 

the NI Ocean basin. During the dry season (October to May), human-induced aerosol 

emissions cause a 3-km thick layer of pollution located over the NI Ocean and Indian sub-

continent, commonly referred to as the atmospheric brown cloud (Ramanathan et al., 2005; 

Evan et al., 2011). This heats the lower troposphere through enhanced solar absorption, while 

cooling the surface due to solar reflection and absorption aloft (Meywerk and Ramanathan, 

1999). Though our results do not conclusively demonstrate a causal link, they nonetheless 

indicate that anthropogenic aerosols in this basin are associated with increased TC activity. 

Whether this is due to direct radiative effects or to indirect effects mediated by changes in the 

large-scale circulation remains an open question. We further note that Wang et al. (2014) 

have reached a contrasting conclusion, namely that anthropogenic aerosols reduce TC 

activity. However, our results overall do not provide much observational/statistical support 

for Wang et al. (2014). 

 

A number of studies, including this one, have found links between mineral dust and TCs in 

the NA (e.g. Evan et al., 2006a; Lau and Kim, 2007) and in the NI. In general, the outcome of 

aerosol interaction with TCs seems to be highly dependent on the basin and aerosol type, and 

indirect effects such as impacts on the large-scale circulation and modes of variability (e.g., 

ENSO) can play a predominant role. 
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4.2 Large-scale modes of variability 

The close link between circulation indices and a large number of other variables including 

aerosols often makes it challenging to determine a clear causal connection between the 

former and TC frequency. This complexity may be exemplified by the case of the AMO, 

which was found to have strong correlations with TC frequency across a range of basins, and 

in Mayfield (2005) is found to act as the main driver of NA hurricane activity. The 

importance of the AMO in modulating TC frequency has been discussed by Goldenberg et al. 

(2001) and Zhang and Delworth (2006), while Vimont and Kossin (2007) identified an in-

phase  relationship between the AMO and AMM and hurricane activity in the NA. A positive 

AMO or AMM causes a northward shift of the ITCZ. This weakens the surface easterly 

winds and the upper level westerlies over the NA, causing a reduction in the vertical wind 

shear and a resulting increase in TC activity. The present study also finds an in-phase 

relationship in the NI Ocean and an out-of-phase one in the SI Ocean (figure not shown). 

However, we do not find a link between the wind shear and TC frequency in these basins, 

suggesting that other changes in large-scale circulation may dominate the modulation of TC 

activity. This may also imply that the diabatic heating that is induced by a positive AMO, 

which is a proxy for the vertical wind shear (Hannachi and Turner, 2013), is not strong 

enough to influence TC activity. The fact that, in the SI, the latter is out-of-phase with TC 

frequency could be explained by the fact that the atmospheric flow is opposite to that in the 

NI (e.g., Goswami et al., 2003).  
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Another result from the analysis of the modes of variability which requires some discussion is 

the apparent lack of influence of the NAO on the NA. Intuitively, the NAO might be 

expected to have a strong effect on any atmospheric phenomenon developing in the NA 

basin. In fact, there is a known link between the frequency of intense cyclones in the North 

Atlantic and windstorms in the Euro-Atlantic sector and the NAO (e.g. Pinto et al., 2009; 

Messori and Caballero, 2015), suggesting that our data for the frequency of cyclones of all 

intensities should show a significant pseudo-R
2
 value. However, this influence is typically 

seen in the extra-tropical domain, and generally pertains to mid-latitude storms. Moreover, 

the NAO explains less variance during a large part of the tropical cyclone season than during 

the winter months, and previous analyses have suggested that a direct NAO-TC link is not as 

obvious as might be intuitively expected (Mestre and Hallegatte, 2009).  

 

4.3 East Pacific and North Atlantic inverse relationship 

One striking result is the opposite relationship found in the sign of the regression coefficients 

of all the circulation indices (i.e. ENSO, NAO, QBO, and AMM) for the EP and NA (Figure 

3). The same holds for most of the meteorological and aerosol variables except: SSTs, BC 

and SS AOD, and precipitable water. This result is in agreement with Wang and Lee (2009) 

and Collins (2010), which shows the robustness of our results and methodology. A proposed 

explanation is that ENSO is the underlying reason for the opposite relationship (Tang and 

Neelin, 2004; Collins, 2007; 2010). During El Niño events, the EP displays warmer SSTs due 

to weakened trade winds and enhanced RH in the boundary layer, which can cause an 

increase in TC activity (Collins, 2010). This hypothesis is in agreement with our results, 

which show a positive regression coefficient between ENSO and TC frequency in the EP 

basin (Figure 3a). In the NA (Figure 3c), the lower level RH (1000-850 hPa), ENSO and the 

wind shear all act to suppress TCs – a result that is well-established in the literature (e.g. 
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Gray and Sheaffer. 1991; Camargo et al., 2007; Collins, 2010). The low-level RH explains 

14% of the log-likelihood in the basin, and the NA is the only basin where the wind shear‟s 

link to TC frequency is statistically significant (pseudo-R
2
 of 28%). The relationship with 

wind shear in the EP, as well as in the other basins, is not so clear. Collins (2007; 2010) 

found the same result for the EP, but offered no explanation. 

 

4.4 Lower Stratospheric Temperatures 

The recent literature on the influence of lower stratospheric temperatures on TCs has largely 

focused on the potential intensity of the cyclones, as opposed to their frequency. However, 

the assertion that lower stratospheric temperature might also affect TC frequency is not 

entirely destitute of basis. Wang et al. (2014) pointed out that tropopause temperatures have a 

larger natural variability on seasonal, interannual and decadal time scales than the SSTs, and 

that upper-atmospheric temperature influences TC intensity. Our results suggest that, at least 

in some basins, atmospheric temperature at 100 hPa (T100) is correlated with TC frequency 

(Figure 3). Our analysis further reveals a possible dipole relationship between the basins in 

the Northern and Southern Hemispheres that should be tested by model simulations. This 

pattern links back to the role of aerosols and volcanic eruptions discussed above. There is a 

clear increase in lower stratospheric temperatures in all basins matching the 1982 El Chichón 

and 1991 Mount Pinatubo volcanic eruptions (for further details, see Vecchi et al., 2013). In 

the EP, the running mean curves of the temperature at 100 hPa and TC frequency during the 

years of the eruptions show a striking correspondence (Figure 5a). The opposite occurs in the 

NA, with a clear reduction in TC frequency in the years immediately following the eruptions 

(Figure 5b). While it is difficult to determine whether these are more than mere coincidences, 

the Poisson regression method suggests a high level of statistical significance in the NA.  
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In general, it remains difficult to assess the impact of lower stratospheric temperatures on TC 

activity due to observational issues related to discrepancies in upper tropospheric temperature 

in the reanalysis datasets (Vecchi et al., 2013). Even though climate models are able to 

reproduce TC interannual variability and activity (Zhao et al., 2009; Chen and Lin, 2013; Wu 

et al., 2014), some climate models do not properly simulate recent cooling trends in the lower 

stratosphere, due to a lack of key processes involving volcanic eruptions and ozone depletion 

(Emanuel et al., 2013). In order to obtain robust projections of future TC activity, it therefore 

seems necessary to address the ability of climate models to properly simulate lower 

stratospheric temperatures, at least in the EP and NA. Motivated by this consideration, we 

test whether a CMIP5 multi-model mean (MMM) for the period 1950-2005 was successful in 

simulating the general lower stratospheric cooling due to enhanced concentrations of 

greenhouse gases. Figure 6 shows the time-latitude 100 hPa temperature from the MMM 

(Figure 6a) versus the MERRA, ERA-Interim, and NCEP/NCAR reanalyses (Figure 6b-d, 

respectively). The MMM clearly shows the signature of the Mount Agung eruption in 1963 

with a temperature anomaly between 0.3 and 0.7 °C. This is followed by a slight cooling over 

the period 1965-1982, with a maximum of about -0.5 °C centered around the tropics. A rapid 

warming then took place after the El Chichón eruption in 1982, with a maximum temperature 

anomaly of about 0.7 °C, peaking near 30° N. However, this maximum warming is weaker by 

about 0.5 °C compared to MERRA and ERA-Interim and by about 0.8 °C compared to 

NCEP. Unlike the MMM and NCEP, MERRA and ERA-Interim also show a maximum 

centered around the North and South mid-latitudes. Discrepancies are also found for the 

Mount Pinatubo eruption in 1991. Following the Pinatubo warming, the NCEP datasets 

shows a strong, persistent global cooling, while MERRA and ERA-Interim show weaker, 

briefer signals. The cooling in the MMM is limited to the mid-latitudes, and peaks roughly 

four years before the cooling shown in the reanalyses.  
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Next, we analyze the vertical distribution of the temperature trends over different periods for 

MERRA, ERA-Interim, and NCEP/NCAR (Figure 7a-c) as well as the MMM (Figure 7d). 

The cooling at 100 hPa is at least twice as large in the NCEP/NCAR reanalysis than in the 

MMM, MERRA, and ERA-Interim, whereas the vertical profiles at lower altitudes display 

reasonably consistent patterns. It is interesting to note that the 30 hPa level also shows 

pronounced anomalies in MERRA, ERA-Interim, and MMM, especially during the period 

1990-1999 (Figures 7e, 7f, and 7h, respectively). Previous studies, however, suggest that 

temperature changes at this level (30 hPa) do not significantly influence TC intensity (Vecchi 

et al., 2013). Vecchi et al. (2013) and Emanuel et al. (2013) also noted that lower 

stratospheric temperatures in the NCEP/NCAR data are cooler than those of other reanalysis 

datasets. Therefore, while the CMIP5 models may struggle to properly reproduce lower 

stratospheric temperature changes, there is no agreement between the different reanalyses 

either.  

 

5. Summary and conclusions 

 

The statistical relationship between seasonal mean environmental variables and tropical 

cyclone (TC) frequency was investigated for the period 1980-2009 in six TC development 

regions (Eastern, Western and Southern Pacific, Northern and Southern Indian and North 

Atlantic Oceans). A generalized linear model based on the Poisson regression was used to 

determine statistically significant links between meteorological variables, aerosols, and large-

scale modes of variability and TC frequency in the different basins. The main findings are 

summarized below: 

1) ENSO is found to be significantly associated with TC frequency in the Eastern 

Pacific and negatively associated with TC frequency in the North Atlantic. TC 

frequency was also found to be significantly negatively associated with RH (1000-
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850hPa) and vertical wind shear (u 200 – u 850 hPa) over the North Atlantic. These 

results are in line with previous studies, such as Wang and Lee (2009) and Collins 

(2010), and support the idea that ENSO is both directly linked to TC activity in 

these two basin and also acts to amplify the effect of a number of variables on TC 

frequency (e.g. Tang and Neelin, 2004; Camargo et al., 2007).  

2) The explained log-likelihoods of AMM and ENSO are 24-27% in the East Pacific, 

North Atlantic, and North Indian. These results are in line with previous studies 

(e.g., Collins, 2007, 2010; Trenberth and Shea, 2006; Vimont and Kossin, 2007). 

We further find an inverse relationship in the North Indian and South Indian, but the 

result for SI is not significant. Due to a low explained log-likelihood for wind shear 

in these two development regions, we suggest that changes in large-scale circulation 

plays a dominant role in the modulations of TC frequency. 

3) The relationship between SSTs and TC frequency is not as strong as that found for 

some of the other variables. Nonetheless, there are still significant explained log-

likelihoods in the Eastern Pacific, North Atlantic, South Indian and South Pacific, 

whereas no significance was found in the Western Pacific and North Indian basins, 

in agreement with Chan and Liu (2004) and Ng and Chan (2012). The explained 

log-likelihood of the relative SSTs is nearly double that of the absolute SSTs in the 

North Atlantic and South Pacific. This is in line with the findings in Vecchi and 

Soden (2007, 2008), Swanson (2008), and Camargo et al. (2013) where relative 

SST anomalies play a larger role in affecting TC potential intensity than absolute 

SST anomalies. Wind shear is only significantly correlated in the North Atlantic, as 

already noted by Aiyyer and Thorncroft (2011).  

4) Tropospheric black carbon and organic carbon aerosols are found to be significantly 

related to TC frequency in the North Indian Ocean. These aerosols can cause 
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tropospheric warming and surface cooling (Meywerk and Ramanathan, 1999), 

which ultimately may modify the monsoon circulation, reduce the vertical wind 

shear and increase TC activity (Evan et al., 2011). We also found a positive 

relationship between sea salt and organic aerosols and TC frequency in the South 

Pacific, which could be related to an increase in surface heat exchange between the 

ocean‟s surface and atmosphere leading to a larger latent and sensible heating.  

5) A link is found between observed dust aerosol optical depth and TC frequency in 

the North Atlantic while the role of modeled dust AOD is only significant in the 

North Indian basin. The modeled dust AOD only becomes significant in the North 

Atlantic during a limited time period. These results are in line with Evan et al. 

(2006a) and Lau and Kim (2007), at least in the North Atlantic.  

6) Stratospheric aerosol optical depth was found to be the variable with the highest 

explained log-likelihood in the Eastern Pacific. We hypothesize that the effect of 

stratospheric aerosols on TC frequency occurs both through direct effects on 

radiation, causing stratospheric warming and surface cooling (Evan, 2012), and by 

an indirect process mediated by circulation changes favoring El Niño-like 

conditions (Adams et al., 2003).  

7) The effect of the lower stratospheric temperature on TC frequency was strongest in 

the North Atlantic with an explained log-likelihood of 28% and with a negative 

regression coefficient. This result indicates that cooler temperatures at this level 

increase TC frequency, and complements results in the literature relative to their 

role in enhancing cyclone potential intensity (e.g. Vecchi et al., 2013; Emanuel et 

al., 2013).  

8) A stratospheric warming following the eruptions of El Chichón and Mount Pinatubo 

is found in all the reanalyses (i.e. MERRA, ERA-Interim, and NCEP/NCAR) as 
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well as in the multi-model mean from five CMIP5 models. However, the 

temperature anomalies in the multi-model mean were smaller by approximately 0.5-

0.8 °C compared to the reanalyses. Though it is difficult at the present time to 

assess the accuracy of the reanalyses, the large model bias may affect projections of 

the future intensity and frequency of TCs.  

 

The relevant variables identified in the analysis can be linked to dynamical and radiative 

forcing processes that influence TC development and hence frequency. The potential effect of 

aerosols and lower stratospheric temperatures on TC activity has not been well documented 

previously. The present paper also uncovers novel relationships, such as that between the 

AMM and the TC frequency in the North and South Indian Oceans. The broad range of 

connections between variables and TC frequency tested here constitutes a first step in 

building a global observations- based framework for understanding and monitoring TC 

development and evaluating the ability of models to accurately simulate TCs. We envisage 

adopting a multivariate multiple regression approach in a future study and looking at time-

lagged relationships between the variables and TC frequency, as well as using principal 

component analysis to analyze more thoroughly the correlations between variables. Future 

studies will benefit from the integrated global observing systems developed by the World 

Meteorological Organization (WMO) and other international observational science 

organizations. Such efforts should in particular focus on stratospheric processes, which have 

been shown to affect TC development.  
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Appendix 

The results of the Poisson regression applied to the NCEP, ERA-Interim, and MERRA 

reanalyses (Figure 9) show a good agreement for SSTs and relative SSTs in all basins, and 

for all significant variables in the NA. The differences between the explained log-likelihoods 

of SSTs and relative SSTs among all the datasets differ by less than 5%. In the NA, the 

discrepancies are modest for most variables: 15% for the SST/lower stratosphere temperature 

difference (SST-T100 hPa), 16% for the temperature at 100 hPa, and of less than 5% and 6% 

for the windshear and precipitable water, respectively. Always in the NA, ERA-Interim 

shows the lowest pseudo-R
2
 values for the SSTs and relative SSTs, and the largest values for 

the temperature gradient, temperature at 100 hPa and windshear. From these results we 

conclude that, although there are important differences between the datasets, it is nonetheless 

possible to draw some robust conclusions on the influence of individual variables on TC 

frequency by applying the statistical technique of Poisson regression.  
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Table 1. Tropical cyclone development domains and season of activity. See also Figure 1.  

 

Basin Coordinates Main Season 

East Pacific (EP) 180-270 ºW, 10-20 ºN Jun-Nov 

North Atlantic (NA) 300-340 ºW, 10-20 ºN Jun-Nov 

North Indian (NI) 60-90 ºE, 10-20 ºN Apr-Dec 

South Indian (SI) 45-120 ºE, -10-20) ºS Nov-Apr 

South Pacific (SP) 150 ºE - 210 ºW, -10-20) ºS Nov-Apr 

West Pacific  (WP) 110-150 ºE, 10-20 ºN Jun-Nov 

 

 

 

 

Table 2. List of all variables in this study, including their source and time period. The 

abbreviations: E, M, and N represent ERA-Interim, MERRA, and NCEP/NCAR, 

respectively. The resolutions for the ERA-Interim, MERRA, and NCEP/NCAR are, 

respectively: 80 km, 1/2° × 2/3°, and 2.5° × 2.5°. The stratospheric AOD is computed as 

zonal means over 8º latitude bands, ranging from 90°N to 90°S.  

 

Variable Abbreviation Source Time Period 

1. SST SST E/M/N 1980-2009 

2. SST-100 hPa Temperature SST-100 E/M/N 1980-2009 

3. 100 hPa Temperature T at 100 E/M/N 1979-2009 

4. Relative SST (SST (basin - tropics))  Rel. SST E/M/N 1979-2009 

5. Wind shear (u 200 – u 850 hPa) Wind Shear E/M/N 1980-2009 

6. Mid-troposphere relative humidity 

(700-500 hPa) 

RH (700-500) 

E/M/N 1980-2009 

7. Lower troposphere relative humidity 

(1000-850 hPa) 

RH (1000-850) 

E/M/N 1980-2009 

8. Precipitable water  Precip. Water E/M/N 1980-2009 

9. Black carbon AOD BC AOD GOCART 1980-2009 

10. Organic carbon AOD OC AOD GOCART 1980-2009 

11. Dust AOD DU AOD GOCART 1980-2009 

12. Sea salt AOD SS AOD GOCART 1980-2009 

13. Sulfate AOD SU AOD GOCART 1980-2009 

14. Stratospheric AOD SAOD NASA 1980-2009 

15. ENSO Index ENSO NOAA 1980-2009 

16. NAO Index NAO NOAA 1980-2009 

17. QBO Index QBO NOAA 1980-2009 

18. AMM Index AMM NOAA 1980-2009 
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Table 3. Climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

used in the multi-model mean comparison for the 100 hPa temperature. 

 

Climate Model Institution Time Period 
Resolution 

(ºlat × ºlon) 

CCSM4 National Center for Atmospheric Research 1950-2005 0.94 x 1.25  

CNRM-CM5 National Centre for Meteorological Research 1950-2005 1.41 x 1.41  

GFDL-CM3 NOAA Geophysics Dynamics Laboratory 1950-2005 2.0 x 2.5  

GISS-E2-R NASA Goddard Institute for Space Studies 1950-2005 2.0 x 2.5  

NorESM1-M Norwegian Meteorological Institute 1950-2005 1.88 x 2.5  
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Figure 1. Global map of tropical cyclone development regions: East Pacific (EP), North 

Atlantic (NA), North Indian (NI), West Pacific (WP), South Pacific (SP), and South Indian 

(SI). Note that no land grid boxes are considered in the above domains. See also Table 1.   
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Figure 2. Seasonal tropical storm frequency in the oceanic basins of the East Pacific, North 

Atlantic, North Indian, South Indian, South Pacific, and Western Pacific. The black lines 

represent the annually averaged seasonal storm frequency. The red line shows a 5-year 

running mean.  
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Figure 3. Pseudo-R

2
 for Poisson regression models for the TC frequency with each of the 18 

variables listed in Table 2 as an explaining variable. Data for the explaining variables are 

taken from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) 

in the seasons as defined in Table 1. The results are shown for the tropical cyclone 

development region of the (a) East Pacific, (b) West Pacific, (c) North Atlantic, (d) North 

Indian, (e) South Indian, and (f) South Pacific. If the sign of the regression coefficient is 

negative for a particular variable, the value of pseudo-R
2
 for that variable is multiplied by -1 

to display negative bars. The variables are tested for significance at the 2.5% level using a 

chi-squared distribution. Non-significant variables are in grey. Variables above the solid 

horizontal line represent dynamical variables while those below represent thermodynamical 

variables. 
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Figure 4. Normalized time series of tropical storm frequency and seasonal mean temperature 

gradient between the SSTs and 100 hPa from the Modern-Era Retrospective Analysis for 

Research and Applications (MERRA) dataset. The panels correspond to: (a) East Pacific, (b) 

North Atlantic, (c) North Indian, (d) South Indian, (e) South Pacific, and (f) Western Pacific. 

The black lines represent tropical cyclone frequency and the red lines are the SST-100 hPa 

temperatures.  
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Figure 5. Same as Figure 4 but for seasonal mean temperatures at 100 hPa. 
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Figure 6. Zonally averaged lower stratospheric temperature anomalies at 100 hPa for (a) the 

Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model mean (MMM); (b) 

the Modern-Era Retrospective Analysis for Research and Applications (MERRA); (c) the 

European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-

Interim); and (d) the National Centers for Environmental Prediction (NCEP). The MMM 

covers the period 1950-2005; the reanalyses cover the period 1980-2009. The values are 

averaged over the regions and seasons of main tropical cyclone development as listed in 

Table 1. 
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Figure 7. Vertical distribution of temperature trends over the periods (a-d) 1980-1989, (e-h) 

1990-1999 , (i-k) 2000-2009, (l) 2000-2005, and (m-o) 1998-2009 from (first three columns 

from the left) the Modern-Era Retrospective Analysis for Research and Applications 

(MERRA), the European Centre for Medium-Range Weather Forecasts (ECMWF) 

Reanalysis (ERA-Interim), the National Centers for Environmental Prediction (NCEP), and 

(right panel) the multi-model mean (MMM) from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) models. The values are averaged over the regions and seasons of 

main tropical cyclone development, as listed in Table 1. The lowest level represents actual 

sea surface temperature (SST). Statistical significance at the 95% level is indicated by a 

closed circle and non-significance by an open circle. 
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Figure 8. Map of regression coefficients, or the change in the logarithm of the mean of the 

tropical cyclone frequency per unit of change in the meteorological parameters, aerosol 

optical depth (AOD), and circulation indices in the domains listed in Table 1. Filled boxes 

denote statistical significance at the 2.5% significance level. Non-significant values are 

indicated by white boxes. The solid horizontal lines separate thermodynamic (left) and 

dynamic (right) variables.  
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Figure 9. Comparison of pseudo-R
2
 values, as defined in Figure 3, but with the first 8 

variables as listed in Table 2 as an explaining variable. The results are shown for the tropical 

cyclone development region of the (a) East Pacific, (b) West Pacific, (c) North Atlantic, (d) 

North Indian, (e) South Indian, and (f) South Pacific. 

 


